Quantifying size distributions of nanolipoprotein particles with single-particle analysis and molecular dynamic simulations.

نویسندگان

  • Craig D Blanchette
  • Richard Law
  • W Henry Benner
  • Joseph B Pesavento
  • Jenny A Cappuccio
  • Vicki Walsworth
  • Edward A Kuhn
  • Michele Corzett
  • Brett A Chromy
  • Brent W Segelke
  • Matthew A Coleman
  • Graham Bench
  • Paul D Hoeprich
  • Todd A Sulchek
چکیده

Self-assembly of purified apolipoproteins and phospholipids results in the formation of nanometer-sized lipoprotein complexes, referred to as nanolipoprotein particles (NLPs). These bilayer constructs are fully soluble in aqueous environments and hold great promise as a model system to aid in solubilizing membrane proteins. Size variability in the self-assembly process has been recognized for some time, yet limited studies have been conducted to examine this phenomenon. Understanding the source of this heterogeneity may lead to methods to mitigate heterogeneity or to control NLP size, which may be important for tailoring NLPs for specific membrane proteins. Here, we have used atomic force microscopy, ion mobility spectrometry, and transmission electron microscopy to quantify NLP size distributions on the single-particle scale, specifically focusing on assemblies with 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) and a recombinant apolipoprotein E variant containing the N-terminal 22 kDa fragment (E422k). Four discrete sizes of E422k/DMPC NLPs were identified by all three techniques, with diameters centered at approximately 14.5, 19, 23.5, and 28 nm. Computer simulations suggest that these sizes are related to the structure and number of E422k lipoproteins surrounding the NLPs and particles with an odd number of lipoproteins are consistent with the double-belt model, in which at least one lipoprotein adopts a hairpin structure.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Determination of the size distribution of monodesperse and bidisperse mixtures of spherical particles in the nanometer and submicron size range by applying cumulant analysis and contin algorithm in dynamic light scattering

Determination of particle size is one of the major needs in the industry and biotechnology. Dynamic light scattering (DLS) is a widely used technique for determining size distribution of spherical particle in nanometer and submicron size range. In this method, there are different algorithms for determining the size and size distribution of particles, which are selected according to the required...

متن کامل

Numerical simulation of effect of non-spherical particle shape and bed size on hydrodynamics of packed beds

Fluid flow has a fundamental role in the performance of packed bed reactors. Some related issues, such as pressure drop, are strongly affected by porosity, so non-spherical particles are used in industry for enhancement or creation of the desired porosity. In this study, the effects of particle shape, size, and porosity of the bed on the hydrodynamics of packed beds are investigated with three ...

متن کامل

Particles Size Distribution Effect on 3d Packing of Nanoparticles Into a Bounded Region

In this paper, the effects of two different Particle Size Distributions (PSD) on packingbehavior of ideal rigid spherical nanoparticles using a novel packing model based on parallelalgorithms have been reported. A mersenne twister algorithm was used to generate pseudorandomnumbers for the particles initial coordinates. Also, for this purpose a nanosized tetragonal confinedcontainer with a squar...

متن کامل

PARTICLE SIZE CHARACTERIZATION OF NANOPARTICLES – A PRACTICALAPPROACH

Abstract: Most properties of nanoparticles are size-dependent. In fact, the novel properties of nanoaprticles do not prevail until the size has been reduced to the nanometer scale. The particle size and size distribution of alumina nanoparticle, as a critical properties, have been determined by transmission electron microscopy (TEM), photon correlation spectroscopy (PCS), surface area analysis ...

متن کامل

CFD Simulation of Parameters Affecting Hydrodynamics of Packed Beds: Effects of Particle Shape, Bed Size, and Bed Length

Packed bed reactors have many applications in different industries such as chemical, petrochemical, and refinery industries. In this work, the effects of some parameters such as the shape and size of particles, bed size, and bed length on the hydrodynamics of the packed beds containing three spherical, cylindrical, and cubic particles types are investigated using CFD. The effect of the combinat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of lipid research

دوره 49 7  شماره 

صفحات  -

تاریخ انتشار 2008